10G以太网接口简介

2020-07-24

10G以太网接口简介

1、10G以太网结构

10G以太网接口分为10G PHY和10G MAC两部分。如下图所示。

图5.1 10G以太网接口整体结构

本设计中使用了Xilinx公司提供的10GEthernet PCS/PMA IP核充当连接10GMAC的PHY芯片,然后将该IP核约束到光模块上构建完整的物理层。需要说明的是本设计主要是完成以太网二层逻辑设计,不涉及PHY层的逻辑设计,如:bit同步、字节同步、字同步、64b/66b编解码等。

2、10G以太网接口PHY

10G EthernetPCS/PMA的整体结构如图5.2所示,其核心是基于RocketIO GTH/GTX来实现的。从图中可知,该模块分为PCS层和PMA层,对于发送数据,PCS层主要功能是对数据进行64B/66B编码、扰码、发送变速等功能。同时在测试模式下还提供了一个测试激励源,用于对链路进行检测。PMA层的主要功能是提供并串转换、对串行信号进行驱动并发送等功能。对于接收数据,PMA层的主要功能是将接收到的高速差分信号进行串并转换、bit同步、时钟恢复等功能,PCS层对于从PMA层接收到的数据进行块同步、解扰码、64B/66B解码、弹性缓存等。同时在测试模式下还提供测试激励检测功能,用于检测链路工作状态。

图5.2 10G Ethernet PCS/PMA结构图

在接口调试过程中,可能用到PMA层的近端环回和远端环回功能。PMA近端回环,用于测试IP核内部自回环;PMA远端回环,用于将接收到的远端10G PHY发送的的数据在PMA层直接回环发送给远端10G PHY,而不经过本地的PCS层。

3、10G以太网接口时钟布局设计

由于10G Ethernet PCS/PMA是Xilinx官方提供的一款IP核,所以我们需要做的工作是结合开发板的实际情况,为该IP核以及其他模块设计合理的时钟电路,使其能够正常工作。本文选用Xilinx VC709开发板作为上板调试的硬件平台,因此我们的时钟布局需要充分考虑此开发板的结构来设计,具体的时钟布局如图5.3所示。

图5.3 10G以太网接口时钟布局

由于VC709开发板连接光模块的Quad并没有直接输入的参考时钟,而是连接到一对SMA接口,因此我们将156.25Mhz晶振产生的时钟经过FPGA内部的IBUFDS、OBUFDS驱动后输出到另一对SMA接口,并通过同轴电缆将两对SMA接口互联,从而使连接光模块的Quad具有输入参考时钟。

对于FPGA内部的时钟布局主要分为以下4部分:

(a)输入的差分参考时钟经过一个参考钟专用缓存(IBUFDS_GTE2)变为单端时钟refclk,然后将refclk分为两路,一路接到QPLL(QuadraturephasePhase Locking Loop),另一路时钟经过一个BUFG后转变为全局时钟coreclk,继续将coreclk分为两路,一路作为10G MAC核XGMII接口的收发时钟(xgmii_rx_clkxgmii_tx_clk),另一路用于驱动10G Ethernet PCS/PMA IP核内部用户侧的逻辑。

(b) 对于QPLL输出的两路时钟qplloutclkqplloutrefclk,主要是用于IP核内GTH收发器使用的高性能时钟,其中qplloutclk直接用于驱动GTH内发送端的串行信号,其频率为5.15625GHz。qplloutrefclk用于驱动GTH内部部分逻辑模块,频率为156.25MHz。

(c) txoutclk是由10G Ethernet PCS/PMA IP产生的一个322.26MHz的时钟,该时钟经过BUFG后分为两路,其中txusrclk用于驱动IP核内GTH的32bits总线数据,txusrclk2用于驱动IP核内PCS层部分模块。

(d)200MHz的晶振产生差分时钟输入到FPGA内的PLL(Phase LockingLoop)模块,PLL模块以200MHz差分钟为驱动时钟生成192MHz用户钟(sys_clk)发送给10G MAC核用户侧。

4、仿真验证

在本节中我们主要是对10G MAC核和10G Ethernet PCS/PMA IP核进行联合仿真测试,用于检测两个模块结合后能否稳定运行。具体的测试原理如图5.4所示。

图5.4 10G以太网接口测试原理图

将10G Ethernet PCS/PMA IP核的高速串行差分信号的输入输出相连,实现回环测试。我们在10G MAC核的用户侧的设置一个数据源用于发送数据帧,数据经过MAC核后转变为标准以太网帧,通过XGMII接口发送到10G Ethernet PCS/PMA IP核,10G Ethernet PCS/PMA IP核将其变为高速串行差分信号输出,高速串行差分信号经过回环被10GEthernet PCS/PMA IP核接收,重复上述过程的逆过程,zui终数据在10G MAC核的用户侧接收接口被恢复。本测试具体分为3个步骤:定长zui短帧(64Bytes)仿真测试、定长zui长帧(1518Bytes)仿真测试、随机帧长仿真测试。在每一个测试步骤中,我们要尽可能模拟10Gbps的业务流。对于数据的检测,我们不但要对比波形是否正确,还要将10GMAC核用户侧的收发数据分别记录到两个文档内,并使用软件对两个文档内的数据对比来判断收发数据是否一致。由于篇幅限制,我们只给出定长zui短帧的仿真结果截图。




分享到